기본 콘텐츠로 건너뛰기

P, NP, NP Complete, NP Hard 정의

P의 정의

P(PTIME 또는 DTIME(nO(1)))는 결정론적 튜링 기계로 다항 시간 안에 풀 수 있는 판정 문제를 모아 놓은 복잡도 종류이다.

NP의 정의

NP는 비결정론적 튜링 기계(NTM)로 다항 시간 안에 풀 수 있는 판정 문제의 집합으로, NP는 비결정론적 다항시간(非決定論的 多項時間, Non-deterministic Polynomial time)의 약자

NP Complete의 정의는?

NP-완전(NP-complete, NP-C, NPC)은 NP 집합에 속하는 결정 문제 중에서 가장 어려운 문제의 부분집합으로, 모든 NP 문제를 다항 시간 내에 NP-완전 문제로 환산할 수 있다. 
NP-완전 문제 중 하나라도 P에 속한다는 것을 증명한다면 모든 NP 문제가 P에 속하기 때문에, P-NP 문제가 P=NP의 형태로 풀리게 된다. 
반대로 NP-완전 문제 중의 하나가 P에 속하지 않는다는 것이 증명된다면 P=NP에 대한 반례가 되어 P-NP 문제는 P≠NP의 형태로 풀리게 된다.

NP Hard의 정의

NP-난해는 적어도 모든 NP 문제만큼은 어려운 문제들의 집합이다.
NP-난해 집합에 속하는 문제가 NP에도 속하면 NP-완전에 속한다. 즉, NP-완전은 NP와 NP-난해의 교집합이다.

댓글

이 블로그의 인기 게시물

Dijkstra 알고리즘과 실행시간(Priority Queue를 사용하는 이유)

정의 어떤 변도 음수 가중치를 갖지 않는 유향 그래프에서 주어진 출발점과 도착점 사이의 최단 경로 문제를 푸는 알고리즘 알고리즈 개요 데이크스트라 알고리즘은 각각의 꼭짓점 v에 대해 s에서 v까지의 최단 거리 d[v]를 저장하면서 작동한다. 알고리즘의 시작 시에 d[s]=0이고, s가 아닌 다른 모든 꼭짓점 v에 대해서는 d[v]=∞로 놓아 다른 꼭짓점에 대해서는 아직 최단 경로를 모른다는 사실을 표시한다. 알고리즘이 종료되었을 때 d[v]는 s에서 v까지의 최단 경로의 거리를 나타내게 되고, 만약 경로가 존재하지 않으면 거리는 여전히 무한대로 남는다. 데이크스트라 알고리즘은 변 경감(edge relaxation)이라고 불리는 기본 연산을 바탕으로 한다. s에서 u까지의 최단 경로(d[u])를 이미 알고 있고, u에서 v까지 길이가 w(u,v)인 변 (u, v)가 존재할 때, s에서 v까지의 최단 경로는 u까지의 최단 경로에 변 (u, v)를 추가함으로써 얻을 수 있다. 이 경로의 비용은 d[u]+w(u, v)가 되며, 이 비용이 현재의 d[v] 값보다 낮으면 d[v]를 새로운 값으로 바꾼다. 경감 연산은 모든 변 (u, v)에 대해 한번씩 경감이 적용되어 모든 d[v]가 최단 경로의 비용을 나타내게 되었을 때 끝난다. 실행시간 개의 변과  {\displaystyle n} 개의  꼭짓점 을 가진  그래프 에 대해  대문자 O 표기법 으로 데이크스트라 알고리즘의 실행시간을 나타낼 수 있다. 가장 간단한 구현으로,  Q 의 집합을  연결 리스트 나  배열  구조로 구현하고 Extract-Min(Q) 함수를 단순한  선형 탐색 으로 구현했을 때 실행 시간은  {\displaystyle O(n^{2})}  시간이 된다. 만약 희소 그래프(sparse graph), 즉  {\displaystyle n^{2}} 보다 훨씬 작은 개수의 변만을 갖는 그래프에 대해서는,...